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On the non-equilibrium thermodynamics of some complex 
dynamical behaviours 

D Jout and J Camacho 
Departament de Fisica (Fisica Estadistica), Universitat Autbnoma de Barcelona, 
08193 Bellaterra, Catalonia, Spain 

Received 13 March 1990 

Abstract. In many situations of physical interest, the dissipative fluxes may be 
considered as a s u m  of an infinite number of terms or an integral. The formalism 
of extended irreversible thermodynamics ( EIT) is generalised to cover these situa, 
tions. Several kinds of memory functions of special physical interest, such as the 
stretched exponential or the potential ones, find in the present formulation of EIT a 
natural place. As simple illustrations, the formal development is applied to charged 
suspensions, porous media and monatomic ideal gases. 

1. Introduction 

The dynamics of the dissipative fluxes plays a central role in non-equilibrium sta- 
tistical mechanics, as it is related to the memory functions describing the response 
of the system to external perturbations. The evolution equations for the dissipative 
fluxes also form part of the central aims of a non-equilibrium thermodynamic theory, 
the so-called extended irreversible thermodynamics (EIT) (Casas-VBzquez el  a1 1984, 
Muller 1985, Jou et  a1 1988, Garcia-Colin 1988). In contrast to the classical the- 
ory of non-equilibrium thermodynamics (De Groot and Maaur 1962, Glandsdorff and 
Prigogine 1971), whose independent variables are those related to the usual balance 
equations (mass density, barycentric velocity, internal energy, etc), EIT also includes 
the dissipative fluxes as independent variables (heat flux, bulk and shear viscous pres- 
sure, electric current, etc). Then the aim of EIT is to obtain evolution equations for 
the fluxes themselves considered to be independent variables in their own right. This 
point of view is of interest for fast phenomena, on the scale of the relaxation time of 
the fluxes, whereas for slow phenomena the relaxation terms disappear and the fluxes 
are directly related to the gradient of the classical variables as i n  the classical theory. 

The simplest versions of EIT take the fluxes as single physical quantities. This 
point of view must be widened in the treatment of more complex systems, as real gases 
(Nettleton 1960, Jou and Micenmacher 1987, Eu 1980) or polymeric fluids (Lebon e2 a1 
1987, Camacho and Jou 1990) where different contributions with different dynamical 
behaviour must be considered in the several fluxes, thus leading to evolution equations 
for the fluxes which are more complex than the simple exponential decay. 

t Also at  Institut d’Estudis Catalans, Spain. 

0305-4470/90/204603+15%03.50 @ 1990 IOP Publishing Ltd 4603 



4604 D Jou and J Camacho 

Here we go a step ahead towards a general formulation of EIT, and we address 
our attention to  several kinds of complex dynamical behaviours, such as the stretched 
exponential decay or the potential decay. In the first case, the decay is of the form 

J ( t )  = J(O)[exp - ( t / ~ ) ~ ]  (1) 

with J ( t )  a dynamical variable and p an exponent 0 < /3 5 1. This kind of dynamical 
behaviour, known in some contexts as the Kohlrausch law or William-Watts law, has 
received a wide attention because of its appearance in many different physical systems 
(Schlesinger 1988, Chamberlin e l  a1 1970, Williams and Watts 1970). Decays of the 
potential kind t-Q have also deserved special attention in statistical mechanics, mainly 
in the context of long time tails (Reichl 1980). Thus it is of interest to  consider the 
thermodynamics associated with this kind of dynamics. 

In section 2,  we present a general formulation of EIT from a macroscopic point 
of view, which considers that  the dissipative fluxes contain an infinite number of 
independent contributions. In section 3,  we analyse how this formalism is able to  
cope with some specific kinds of dynamics of the fluxes which are of special interest. 
Section 4 provides three simple illustrations of the theory, applied to  suspensions, 
porous media and monatomic ideal gases. Section 5 is devoted to some concluding 
remarks. 

2. Thermodynamic development 

To achieve a maximum simplification we assume a simple system whose equilibrium 
state is described by means of the internal energy, such as a solid rigid or an in- 
compressible fluid. The extension to  more complex situations is straightforward. We 
assume furthermore a non-equilibrium situation related to  a dissipative flux J, which 
could be the heat flux, the electric current, the viscous pressure tensor, the diffusion 
flux, etc. When J is an electric current the generalised entropy per unit mass s of EIT 
has the form (Jou el al 1988) 

ps = pseq - 7- J ' J 

where p is the mass density, U the electrical conductivity, T the relaxation time of the 
flux J and T the local equilibrium temperature. For a heat flux q the generalised 
entropy is 

with X the heat conductivity and T the relaxation time of q. These entropies lead to  
evolution equations for the fluxes of the relaxational kind 

E being the electric field, and 
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When the relaxation terms may be omitted, equations (4) and (5) reduce respectively 
to  Ohm and Fourier laws. 

The classical entropy production ( u s )  for electrical conduction and heat conduction 
has the form 

(6) 
1 

U, = - J *  E T 

Note, however, that  the entropy production as expressed by (6) and (7) may become 
negative for evolution equations of the form (4) or (5). Of course, when the relaxation 
terms may be omitted, Ohm’s law and Fourier’s law satisfy the positive character of 
(6) and (7). 

Thus, to  have a thermodynamic framework consistent with (4) and ( 5 )  the entropy 
is generalised as in (2) and (3).  The entropy production related to such generalised 
entropies is, respectively (Jou e2 a1 1988) 

It is obvious that  (4) and (5) satisfy the positive character of (8) and (9). Thus,  the 
compatibility between classical non-equilibrium thermodynamics and the dynamics is 
not obvious a t  all, but requires sometimes a modification of very basic quantities, such 
as the entropy. 

To obtain the form of the entropy compatible with a dynamical behaviour of the 
form (1) we consider that  the flux J is the sum of an infinite number of contributions 
characterised by a continuous parameter z, that  is to say 

J ( T , ~ )  = dz  f(z)J(z;~,t) J 
where f(z) is a weight factor ascribed to the z t h  level and J ( z ; ~ , t )  E J ( z )  is the 
value of each contribution to J at  the z t h  level. Some specific examples will be dealt 
below. 

For J being the electrical current, we assume that each t,erm J ( z )  satisfies a 
relaxational equation of the form (4), i.e. 

r ( z ) j ( z )  + J ( z )  = u ( z ) E .  (11) 

The generalised entropy corresponding to (10) and (11) will be, according to (2) 

and the entropy production will thus be a simple extension of (8), namely 
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which is always positive, as it must be. 

fluctuations 
Note, finally, that the application of the Einstein formula for the probability of 

P r  - 
allows us to obtain 
ations of the fluxes 

from (12) the following expression for the second moment fluctu- 
around an equilibrium state 

k T a ( z )  1 
(6J(2)6J(z’)),, = ---6(z - 2’) .  v f (z>  

This is an expression of the fluctuation-dissipation theorem, which relates the dissi- 
pative coefficients to the fluctuations of the fluxes. We may use this expression to 
evaluate the fluctuations of the total flux J ( t ) .  From (10) we get 

Since in equilibrium 6 J ( z , t )  = bJ(z,O)exp(-t/r(z)) ,  one will have, because of (15) 

and by carrying an integration over the time one recovers the Green-Kubo relations. 
This simple and natural generalisation of the previous formalism of EIT will be able 

to cope with a wide variety of dynamical behaviours for the fluxes, and in particular 
with some kinds of special interest, as will be shown in the next section. 

3. Some particular dynamical behaviours 

We explore in some detail the consequences of the thermodynamic formalism presented 
in the previous section. The solution of (11) is 

Here we do not make the usual assumption that the system is in an equilibrium state 
at  t = 0,  but we allow for the possibility of non-vanishing initial values for J ( + ) .  

Two situations deserve special attention: (1) the decay of the flux J ( t )  starting 
from a non-equilibrium steady state when the corresponding force E( t )  is suddenly 
switched off and (2) the memory function describing the response of the system, 
initially in an equilibrium state, to an external perturbation E( t ) .  
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Case 1. Decay of the flux 
The steady-state value of J ( z )  is, according to ( l l ) ,  

J ( z )  = a(z)Eo. (19) 

Thus, when E ,  is suddenly turned off in t = 0, one has 

J ( t )  = J d z f ( z ) J ( z , t )  = - J ( O ) / d z f ( z ) o ( r ) e x p ( - t / r ( z ) )  1 (20) 
U 

with J ( 0 )  the initial value of the flux J ,  and U the total electrical conductivity defined 
as 

U = dz  f(z).(z) (21) 

Case 2. Memory functions 
The total value of the flux J ( t )  at a time t as a response to a perturbation E ( t )  
starting from an equilibrium state may be written in the form of a memory function 
@(t - t ') 

J ( t )  = @(t  - t / )E(t / )dt / .  J,' 
According to (18) the memory function will be 

Comparing with (17) one obtains the known relation between the fluctuations and the 
memory functions (Garcia-Colin el a1 1984): (6J(0)6J( t ) )  = (kT/V)@(t ) .  

In (20) and (23) appear integrals of the form 

Consequently, by choosing different expressions for the g(z) and r ( z )  functions one 
can obtain a wide variety of dynamical behaviours. We may choose functions of the 
form 

where r l ,B and c are positive parameters. The dependence of r on x in this case 
is, of course, very simple, but one can consider simple models where this dependence 
appears quite directly, as in the examples shown below; another interesting example 
is given by Cohen and Grest (1981) in the study of dense liquids and glasses using 
percolation theory. Nevertheless, it should be not,iced that this model gives arbitrarily 
small values for ~ ( z )  as t tends to zero (when s > 0) or to infinity (when s < 0). 
This is, from our point of view, physically meaningless since particles need a finite 
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time to  interact and, obviously, no physical magnitude describing the system (such 
as the dissipative fluxes) can evolve in a time faster than the interaction between 
the particles. For this reason we must not expect that  such a model gives physically 
meaningful results in the limit of short times. A model with a lower bound for the 
range of z would be more realistic; if we choose the value of this lower bound as 1 
then rl would be the minimum relaxation time. In any case, in this paper we do not 
analyse the limit of short times so that we can use the model without problems. 

For positive s, an asymptotic evaluation of integral (24) using (25) and (26) gives, 
in the long-time limit, a time dependence of the type (Palmer e t  a1 1984) 

where T is a time parameter. In this limit, a function of the type g(z) - r m  exp(-czP) 
leads to  

P I P t S  

Q( t )  - exp [- (31 (28) 

as can be seen by means of the saddle-point method. Thus in these cases, the exponent 
turns out to  be smaller than 1 .  It is remarkable that the effect of the potential factor 
2"' in function 8(t)  is negligible a t  long times (see the appendix). 

As we have just seen, the stretched-exponential behaviour is obtained in the long- 
time limit from a wide range of g ( r )  functions. The problem is that  this limit only 
corresponds to  the period of time when the Q(t )  function has already fallen to  a small 
percentage of its initial value (Palmer e t  al 1985). In any case, notice that according 
to  (20) and (23) the functions g ( r )  for the cases 1 and 2 only differ in a factor zS, 
which is irrelevant a t  the long time limit as it is shown in (28). Therefore, in this 
limit, the time dependence of the decay function is the same as that of the memory 
function. (In fact, it can be seen that they differ by factors of order ( t / r )* ,  but these 
are meaningless for long times.) 

Some attempts have been made to  include the stretched-exponential model in EIT 
by assuming a time dependent relaxation time (del Castillo and Garcia-Colin 1988). 
We think that the model proposed in this paper is simpler and more illustrative than 
the other one, unless one tries to  justify this time dependence on some physical grounds 
such as, for instance, some processes connected in series, as assumed by Palmer e t  al ,  
instead of parallel ones. 

However, a numerical evaluation of integral (24) using expressions (25) and (26) 
shows that  it can be well fitted by a stretched-exponential function over long periods 
of time, including the period of major decay, but with a different exponent p (Palmer 
et  a1 1985). Furthermore, one can find some cases where the stretched exponential 
behaviour is obtained exactly (in fact we do not need so much, since this behaviour is 
not experimentally obtained a t  the very beginning). This is the case when ~ ( t )  - z2 
and g(z) - exp(-cz'), where the exponent p takes the value f. The same exponent 
is also found, consequently, when ~ ( z )  - z p  and g(t) - ~ P / ~ - ' e x p ( - c z P ) ,  as can 
be directly seen from a simple change of variables. A similar behaviour (but not the 
same) can be obtained in the case r(t) - X P  and g ( r )  - exp(-czP), for any v 
and p 
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where the IC, are the modified Hankel functions. When v / p  = 3 we recover the 
previous case. 

Another interesting dynamical behaviour, the algebraic decay Q(2)  - t - 0 ,  can be 
achieved by integral (24) choosing ~ ( t )  - exp(cz) and g(z) - exp(-pz), then p = p / c .  
This is the case for the diffusion of particles in a space with a canonical distribution of 
activation barriers, then t would be its energy and J the flux of particles. This model 
may be applied to  describe the potential decay experimentally found in the activity 
of some mixtures of radioactive isotopes. 

4. Simple illustrations 

We deal in this section with three simple illustrations clarifying the meaning of the 
previous section. The two first ones are macroscopic while the second is more related 
to microscopic quantities. 

4.1. Suspensions 

Assume a suspension of charged spherical particles of different sizes. The distribution 
of particles of radius r will be denoted by f ( r ) .  The particles are immersed in a 
simple, viscous, non-polarisable fluid, and the suspension is dilute enough to neglect 
the effects of interactions between particles. The total electric current will be thus 
given by 

where q ( r )  is the charge of particles of radius r and v ( r , t )  is their velocity at  time 
t .  Note that q ( r ) v ( r , t )  = J ( r , t )  is the contribution of a particle of radius T to the 
electric current. 

The equation of motion of a particle may be written as 

(31) 
dv 
dt 

m’(r)- = -a(r )v  + q(r )E  

with m’(r) the effective mass and a(r )  a frictional constant. Therefore, the steady- 
state velocity will be 

and the relaxation time ~ ( r )  is 

We do not consider here long-time tail hydrodynamic effects in the decay of the velocity 
because, at  the present stage, we are aiming only at a simple illustration of the formal 
framework rather than at  a detailed description of charged suspensions. 
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Since the effective mass is proportional to r3 and the frictional constant is propor- 
tional to  r ,  it turns out that ~ ( r )  - r'. Furthermore, the electrical conductivity u(r)  
corresponding to particles of radius r will be 

Therefore, according to the previous section, the electrical flux will decay, for long 
times, as 

if f ( r ) a ( r )  - rm exp(-cr) or, equivalently, iff(.) - r" exp(-cr). Of course, a depen- 
dence of the type f ( r ) u ( r )  N rm exp(-crp) would give an exponent p / p +  2 instead of 
5 for the relaxation (and for the memory function). 

Let us consider the thermodynamic aspects of the problem. The generalised en- 
tropy (12 )  may be written explicitly as 

S = Seq - - 1 /f(r)$$r)'v(r)' d r  
2T 

or, according to (33) and (34), 

S = Se, - 1 T / d r f ( r )  $m(r)v(r)' 

(36) 

(37) 

Thus, in the situation analysed here, the generalised entropy may be interpreted as 
the equilibrium entropy minus the contribution of the averaged, systematic micro- 
scopic motion of the charged particles, i.e. their kinetic energy divided by the absolute 
temperature. 

4.2. Porous media 

Another simple illustration is provided by a porous medium with a fraction f ( r )  of 
pores of radius r in parallel. The global equation of motion of the fluid in the cylindrical 
(but tortuous) pore, denoting by U the average velocity of the fluid in it and by Ap 
the pressure difference between the ends of the pore, would be of the form 

with m(r) the mass of the fluid contained in the pore: m(r)  - rr21(r)p,  p being the 
fluid density; and a(.) is of the form a ( r )  - 2rI(r)q,  where I ( r )  is the average length 
of a pore of radius r and q the shear viscosity. 

On the other hand the flux Q(v) which corresponds to a pore of radius r is 

Q(r)  = rr2u(r) .  (39) 

If one writes u ( r )  in terms of Q(r)  and substitutes into (38) one obtains 

m ( r ) ~  dQ(r) = - -Q(r)Q(r)  + ?r2r4Ap. 
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Thus, in the steady state the flux in the pore of radius r would be 

whereas the relaxation time will be 

Note that T ( r )  N ( r21(r )p) / ( l ( r )q)  - ( p / q ) r 2  so that r ( r )  - r2 as in the previous 
illustration, and r ( r )  - x2r4 /c r ( r ) .  

The global flux Q ( t )  may be written as 

with the memory function 

x2r4 ( tTyr;) 
I<(t - t ’ )  = drf(r)-exp -- J m(r)  

(44) 

Thus, according to  (28), if f ( r )  - rm exp(-crp) the flux would decay with an exponent 
p / p +  2, and the same exponent stands for the memory function, both in the long time 
limit. 

The Fourier transform of the memory functions yields a frequency-dependent per- 
meability in a generalised Darcy’s law of the form 

; ( U )  = -ikX(w)p(w) (45) 

with k the wavevector. This generalised permeability is of interest in the analysis of 
waves in porous systems. In the simplest form of Biot’s theory, based on the usual 
Darcy’s law, the K ( W )  have the simple form 

I -  
1 + i w r  

I<(w) = ~ 

where r = pw K / n ,  with n the porosity, pw the fluid density and I< the low-frequency 
limit for the permeability. This global definition does not take into account the de- 
tailed microstructure of the channels in the porous medium. In contrast, the memory 
function used in (44) does contain information on the density of channels as a function 
of the radius. 

On the other hand, the entropy of the porous system, according to (12), (39) and 
substituting r and U ,  is 

= -1 J d r  f ( r )  i m ( r ) u ( r ) 2 .  T 

The non-equilibrium term is, thus, the kinetic energy 
divided by T. 

(47) 

of the mean fluid in the pores 
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4.3. Heat  flux: a microscopic illustration 

From a formal point of view the usual version of EIT for an ideal monatomic gas (Jou 
et a1 1988) may also be cast in the way proposed in this paper. This allows us to  
generalise its scope to  complicated memory functions. To do this, we work a t  the level 
of the velocity distribution function f ( r ,  c ,  t ) ,  we denote 

6 f ( c , ~ , t )  E f ( c , T , t )  - f e q ( c , ~ i t )  (48) 

with feq the local-equilibrium function. 

written in the absence of external forces as 
We will assume that the evolution equation for the distribution function f may be 

with ~ ( c )  a velocity dependent relaxation time. 

of the microscopic reduced heat flux Q(c)  = ( i m c 2  - !kT)c,  as 
On the other hand, the macroscopic heat flux q ( T ,  t )  can be expressed, in terms 

because the local-equilibrium distribution function feq(c ,  T ,  t )  does not contribute to  
q.  We will write (50) in the form 

(51) 

with Q ( c , T , t )  E G(c)6 f ( c ,  T ,  t ) .  An evolution equation for Q(c ,  T ,  t )  may be obtained 
from (49). By adding and subtracting f,, into the left-hand side of (49) one gets 

1 a(sf) + C . V ( S f )  = ----6f - C . V f e q .  
at .(cl 

The last term in (52) when one takes for feq the local-equilibrium distribution func- 
tion, and taking into account that the spatial derivative must be evaluated under the 
condition of uniform pressure in order to avoid convective transport, is 

1 
c . V f e q  = - f eqG(c ) -VT kT2 (53) 

with G(c) defined previously. Multiplying (52) by G(c) one finds 

1 
Q - - f G ( c ) ~ ( c )  V T .  as  1 - + v .  [CQ] = -- 

at ~ ( c )  kT2 eq (54) 

We have not included in ( 5 2 )  the term ikc(b f ) V T  which comes from the gradient of 
G(c) because it is a second-order term in the temperature gradient (notice, moreover, 
that  this term vanishes when integrated over the velocities). The term in CO is the 
flux of Q.  The influence of the inclusion of such terms in EIT has been studied 
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elsewhere (PCrez-Garcia and Jou 1986). Here we will neglect its contribution for the 
sake of simplicity. In this approximation, equation (54) has the form of a Maxwell- 
Cattaneo law for Q ,  as it happened in the previous cases for the magnitude under 
study. Therefore, according to (54), in a steady state we will have 

$(C, r )  = --f kT2 eq (C, r)tj(c)B(c) - VT -x(c, r )  VT (55) 

where we have formally denoted X(c, T )  as the tensor relating Q(c, T )  with VT(r ) .  

formula for the entropy 
Now we turn our attention to the entropy. Applying the well known Boltzmann 

to a non-equilibrium state (f = feq[l + d]), one obtains up to second order (Jou et  al 
1988, De Groot and Mazur 1962)  

In our case 4 = Sf/feq,  and using that, according to (55), l/feG may be written in 
terms of X(c,r) and ij(c), expression (55) leads us to 

which is precisely the form of the entropy s that should be expected according to 
section 1. 

To produce an expression for the entropy closer to the usual one in EIT one may 
introduce (55) in (58) to find 

When T(C) = r0 is velocity independent, and taking into account the fluctuation- 
dissipation result and the isotropy of the system in the equilibrium state 

with X the thermal conductivity and U the unit tensor, (59) may be written as 

ps = pseq - -VT* TO VT 2T2 

Since in the steady state q = -XVT, (61) may also be cast as 

T 
ps = pseq - - 2XT2 

which is the usual expression for the entropy in EIT 
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The present formalism allows us to include in the framework of EIT a wide variety of 
forms for the time correlation functions for the fluctuations of the heat flux. According 
to (54) the fluxes Q ( c , T , ~ )  relax as 

Therefore, the time correlation function around an equilibrium state 

will be 

(67 1 

For other models of T ( C )  the temporal behaviour of the time correlation function may 
be very different from the simple exponential one. To give only an illustration one 
could consider the simple example in which T ( C )  21 //c, with 1 a constant mean free 
path. Then (66) could be written as 

2 mc2 m 

(6q(0)6q(t))  - dc ($mc2 - $kT) c4exp (-= - F) . (68) 
0 

The integrals may be evaluated taking into account that 

6) D-n (&3) 
dzz"-'exp(-pz2 - yz) = (2p) -"h ' (n)  exp 

with D , ( z )  the parabolic cylinder function of order n,  whose asymptotic behaviour is 

n(n - 1) 
D , ( z )  - exp(-z2/4)zn 1 - ( 2 2 2  

so that in this case, the long time behaviour of (6q(O)6q(t)) would be of the form 
t - 5 .  If one considered a time dependence of the type T ( C )  - c - ~  the fluctuations 
would decay with an exponent i, as can be directly seen. Of course, many other more 
realistic models for ~ ( c )  could be analysed, and the corresponding non-equilibrium 
entropy in the steady state could be computed from (59). 
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5, Concluding remarks 

The non-equilibrium contributions to the generalised entropy may be justified from a 
more general perspective than that discussed in the previous sections (Jou e t  al 1988)) 
and which provides a simple interpretation of its physical origin. Note that, according 
to (8) and (11) the entropy production will be of the form 

If one assumes a non-equilibrium steady state with value of J ( z )  given by J(z,O) 
one may attribute an entropy to a small volume of the system in the non-equilibrium 
steady state in the following way: one suddenly isolates the subsystem and lets it 
reach equilibrium. The final entropy will thus be the local-equilibrium entropy seq. 
The initial entropy may be related to the final entropy by integration of the entropy 
production, namely 

Psfinal(eq) = Psinitial(nOneq)+ Q, dt* (72) 

J ( z ,  t )  = J ( z ,  0) exp(-t/r(z)) (73) 

LW 
Since, according to (11) each J ( z )  decays exponentially, one has 

so that 

and therefore 

in agreement with the expression used in (12). 
The use of non-equilibrium thermodynamics formalism suggests in a direct way 

evolution equations more complex than (1 1). According to non-equilibrium thermo- 
dynamics, one should expect a mutual interaction between the several thermodynamic 
fluxes and forces, in the form 

with p(z ,z ’ )  = p ( d ,  z), according to Onsager reciprocity relations. The restrictions 
of the second law would be in this case not only p ( z )  2 0 but also 

The crossed terms could arise, in the simple models presented in section 4, from the 
interaction among particles of different radii or velocity, or from crossed connections 
among the different channels. 

As a summary, the usual formalism of EIT has been shown to be able to cope with 
a wide variety of physical situations, provided it is slightly generalised. The present 
formulation opens to EIT new perspectives in the analysis of system suspensions, emul- 
sions or porous media, which up to now were not accessible to its standard methods. 
The stretched-exponential decay, which is found in many complex systems, is included 
in the present formulation of EIT. 
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Appendix 

We evaluate integral (24) for the case g(z) 2: xm exp(-ccp) and rz = rl zs by means 
of the saddlepoint method and show that for high enough values of time the potential 
factor zm is not relevant. 

We start from the integral 

dz  x” exp( -czP) exp (-kc-’) = J d z  exp(f(z; t ) )  J 
with the function f(e;t) E - ( t / ~ ~ ) z - ~  - czp + mlogz.  The maximisation of this 
function occurs for the value to satisfying the equation 

as it is obtained by simple derivation. It is evident from this equation that eo must be 
big at big values o f t ,  and since p > 0 it is obvious that the first term in the left-hand 
side becomes more important than the second one in this long time limit. 

To calculate integral ( A l )  by the saddle-point method one approximates 
exp(f(z; t ) )  2: exp[f(zO;t)  + i f ” ( z o ; t ) ( c  - eo)*], so that it can be written as 

exp(f(c,;t)) / d e  exp[$f”(zo; t ) ( z  - z0)2] - exp(f(eo; t))(f”(z0;t))-’l2. (A3) 

On the other hand, from cpzgtS s ( t / r l )  one may write zo - t’l(ptS); thus substitut- 
ing into the expression for f(z;t) one obtains exp(f(zo;t))  exp(Mtpl(pts)+Nlogt), 
with M and N some constants. The term in f ” ( z O ; t )  is also of the form t a ,  so that it 
contributes with a term of order logt at  the exponent. Since these terms are negligible 
at  long times as compared with the potential one the stretched-exponential behaviour 
is obtained. 

We have thus seen that in the long time limit, when the sa.ddle-point method 
supplies a stretched-exponential behaviour, the effect of potential terms, z“, in the 
function g(z) is negligible. 

References 

Camacho J and Jou D 1990 J .  Chem. Phys. 92 1339 
Casas-Vhzquez J, Jou D and Lebon G (eds) 1984 Recent Developments in Nonequilibrium Thermo- 

Chamberlin R V,  Mozurkewich G and Orbach R 1984 Phys. Rev. Let t .  5 2  867 
Cohen M H and Grest G S 1981 Phys. Rev. B 24 4091 
De Groot S R and Mazur P 1962 Nonequilibrium Thermodynamica (Amsterdam: North-Holland) 
del Castillo L F and Garcia-Colin L S 1988 Phys. Rev. B 37 448-53 

dynamics (Berlin: Springer) 



Non-equilibrium thermodynamics 4617 

Eu B C 1980 J. Chem. Phys. 73 2958 
Garcia-Colin L S, Mpez de Haro M, Rodriguez R F, Casas-Vdzquez J and Jou D 1984 J .  Slat. Phys. 

Garcia-Colin L S 1988 Rev. M e t .  Fis .  34 344 
Glandsdofi P and Prigogine I 1971 Thermodynamic Theory of Structure, Stability and Fluctuations 

Jou D and Micenmacher V 1987 J .  Phys. A:  Math. Gen. 20 6519 
Jou D, Casas-Vdzquez J and Lebon G 1988 Rep. Prog. Phys. 5 1  1104 
Lebon G, Pdrez-Garcia C and Casas-Vdzquez J 1986 Physica 137A 531 
Muller I 1985 Thermodynamics (London: Pitman) 
Nettleton R E 1960 Phys. Fluids 3 216 
Palmer R G, Stein D L, Abrahams E and Anderson P W 1984 Phys. Rev. Lett. 53 958 
- 1985 Phys. Rev. Lett. 54 365 
PCrez-Garda C and Jou D 1986 J. Phys. A:  Math. Gen. 19 2881 
R e i d  L E 1980 A Modern Course an Sta t i s t ica l  Mechanics (Austin, TX: University of Texas Press) 
Shlesinger M F 1988 Ann. Rev. Phys. Chem. 39 269-90 
Williams G and Watts D G 1970 Trans. Faraday Soc. 66 80 
Zwanzig R 1985 Phys. Rev. Lett. 54 364 

37 465-84 

(New York: Wiley) 


